
A unified GLTF/X3D extension to bring Physically-Based Rendering to the Web

Timo Sturm∗ Miguel Sousa† Maik Thöner‡ Max Limper§

Fraunhofer IGD, Darmstadt / TU Darmstadt

Figure 1: Dielectric and metallic physically-based materials, described with a small set of intuitive parameters and rendered in real-time
inside a Web browser, using WebGL. From left to right: white dielectric, iron, gold, copper, red dielectric.

Abstract

We present a unified material description and transmission for-
mat for real-time, physically-based shading. Our format is general
enough to be used consistently across multiple rendering systems
and platforms, covering a wide range of applications from desk-
top to Web. Furthermore, our format’s expressiveness allows to
represent a wide variety of real-world materials. First, we define
a common parameter set for physically-based shading in modern,
real-time 3D graphics systems. We then demonstrate its applica-
bility for several types of materials on different rendering systems.
Finally, we propose a transmission format, in the form of extensions
for the glTF and X3D standards.

Keywords: physically-based rendering, real-time rendering, glTF,
X3D standardization

Concepts: •Computing methodologies → Graphics file for-
mats; Reflectance modeling;

1 Introduction

Ever since the first computer generated images of 3D models, there
has been an attempt to improve the shading of the surfaces to pro-
duce a more realistic result.
Based on the Phong reflection model [Phong 1975], the Blinn-
Phong model [Blinn 1977] became ubiquitous in real time 3D
graphics, being used by both, OpenGL and Direct3D.
Even though improved models have been introduced over the years,
these were not a good fit for real-time applications as they added

∗e-mail:timo.sturm@igd.fraunhofer.de
†e-mail:miguel.de.sousa@igd.fraunhofer.de
‡e-mail:maik.thoener@igd.fraunhofer.de
§e-mail:max.limper@igd.fraunhofer.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Web3D ’16, July 22-24, 2016, Anaheim , CA, USA
c© 2016 ACM. ISBN 978-1-4503-4428-9/16/07 . . . $15.00

DOI: http://dx.doi.org/10.1145/2945292.2945293

significant computational costs.
The introduction of programmable graphics pipelines made it pos-
sible to use variations of the reflection models better suited for a
particular application. Meanwhile, the graphics APIs moved away
from fixed lighting models and, as a result, no new standard models
were established.
In recent years, Physically-Based Rendering (PBR) has been gain-
ing a lot of attention. The main premise is that modeling natural
light behavior leads to more consistent results and unifies the shad-
ing of diverse materials. In this context, Disney’s work [Burley
2012] was highly influential.
Although the number of content creation tools and game/rendering
engines implementing the concept of PBR increased, material defi-
nitions converged to a common set of parameters. Nonetheless, no
proposal for a standardized material description has been put for-
ward.
With the introduction of WebGL, 3D models became commonplace
on the Web with some of the Web applications behind it using PBR.
As in the case of desktop graphics, no unified model for materials
has been suggested.

In this paper we propose a set of parameters and a PBR shading
model that we believe can be used for representing a wide range of
materials, based on the current state of the art of PBR. Our solution
results from capturing the most relevant features from prominent
implementations of physically-based rendering.
Furthermore, we present a set of nodes for X3D and a correspond-
ing set of extensions for glTF for representing PBR materials, along
with the resulting renderings captured in a Web context.

2 Related Work

PBR Engines. Most major digital content creation tools and
game engines currently make use of some form of physically-based
rendering.
Unreal Engine 4 [Epic 2016], the game engine from Epic Games,
uses PBR extensively. The use of PBR led to more realistic render-
ing while at the same time it improved artists workflow by simpli-
fying the process of creating materials. These materials are defined
by a small set of intuitive parameters.
Unity 5 [Unity 2016], another popular game engine, also uses PBR
and a small set of parameters in its Standard Shader in order to
produce realistic rendering. The move to PBR also simplified the
process of authoring physically plausible materials compared with
previous versions of the engine.

117

http://dx.doi.org/10.1145/2945292.2945293

Substance Designer 5 [Allegorithmic 2016] is a material authoring
tool designed around PBR. Materials are created using a node edi-
tor and the application can generate a wide range of textures maps.
It integrates with the most popular digital content creation tools and
game engines.

WebGL engines. Currently, most engines running on WebGL are
not based on PBR. The popular three.js engine [ThreeJS 2016] does
not have native support for physically-based shading although it is
possible to implement it by writing custom shaders and materials.
The X3DOM framework [Behr et al. 2009] is a similar example.
Although it has an implementation of the CommonSurfaceShader
[Schwenk et al. 2012], it is not complete thus far and it only sup-
ports some of the general parameters from the CommonSurface-
Shader node.
However, some WebGL based applications are introducing PBR on
the Web. One example is Sketchfab [Sketchfab 2016], a website for
displaying and sharing 3D content. It allows the use of PBR mate-
rials on the uploaded models.
Marmoset, developer of Toolbag [Marmoset 2016], also uses PBR
in their pipeline. Marmoset Viewer is a WebGL based viewer using
PBR for content exported by Toolbag 2.

Transmission Formats. The GL Transmission Format (glTF)
[Khronos a] is an open project by the Khronos Group which aims at
defining a format for asset delivery tailored for OpenGL APIs. One
key characteristic of the glTF is that its data structures are homolo-
gous to the ones used by OpenGL.
In the context of Web applications, often running with limited re-
sources, this is an important feature as it significantly simplifies
the parsing of data structures and eliminates the need for data re-
encoding, especially when using its binary version as defined in the
KHR_binary_glTF extension.
Another important aspect of this format is its extensibility. The
glTF extension model [Khronos c] allows the expansion of any part
of the original format.
The current version of glTF (1.0) does not permit the generic defi-
nition of materials using a set of parameters although the proposed
KHR_materials_common extension provides such support for
legacy reflection models such as the Blinn-Phong model.
X3D, a standard XML-based file format for 3D content, has no sup-
port for PBR materials. However, being highly extensible, it is pos-
sible to write new Nodes to this end.

3 Physically-based Rendering

Physically-based rendering (PBR) refers to the concept of using re-
alistic shading/lighting models along with measured surface values
to accurately represent real-world materials.

PBR is more of a concept than a strict set of rules, and as such, the
exact implementations of PBR systems tend to vary. Still, as they
are based on the same principal idea (improve realism by approx-
imating physical laws), they are similar across implementations.
Some of the main goals behind PBR are:

Simplicity

PBR uses an easy to understand material description defined by a
small set of intuitive parameters instead of a large array of param-
eters, which results in decision paralysis, trial and error, or inter-
connected properties that require many values to be changed for a
single intended effect.

Extensiveness

PBR can cover up most of the materials that occur in the real world

with a single shading model. As deferred shading limits the num-
ber of shading models that can be used, this is highly beneficial.
On forward renderers it improves performance by reducing shader
switching.

Consistency

By using physically-based shading models, which follow real phys-
ical laws, materials will look accurate and consistent in all lighting
conditions without changing an immense list of parameters and set-
tings.

4 Shading/Lighting Model

The core of every PBR implementation is the underlying shading
model. As mentioned before, at this time PBR is more of a concept
than a true standard. Therefore, the implementation of the shad-
ing/lighting model and the used diffuse and specular Bidirectional
Reflectance Distribution Function (BRDF) varies between systems.

Most systems we analyzed implement PBR as a combination of
Imaged-based lighting and the the Cook-Torrance microfacet spec-
ular BRDF [Cook and Torrance 1982] and the Lambertian diffuse
BRDF.

4.1 Specular BRDF

The Cook-Torrance reflectance model was chosen as it is the most
commonly used physically-based specular BRDF. It is based on the
microfacet theory in which surfaces are composed of small-scale
planar detail surfaces of varying orientation. Each of these small
planes, so called microfacets, reflects light in a single direction
based on its normal.

The Cook-Torrance specular BRDF is defined as follows:

f(l, v) =
D(h)F (v, h)G(l, v, h)

4(nl̇)(nv̇)
(1)

Where l is the light direction, v is the view direction, h is the
half-vector, n is the normal, D is the normal distribution function
(NDF). F is the Fresnel term and G is the geometry term.

Specular D

Specular D is represented by the normal distribution function which
is used to describe the statistical orientation of the micro facets at a
given point. The first PBR implementations used distributions such
as Phong or Beckmann, but recently the GGX distribution [Walter
et al. 2007] has become a popular choice. It is defined by:

D(h) =
α2

π ((n · h)2(α− 1) + 1)2
(2)

Where h is the half-vector(microfacet normal), n is the normal and
α is the roughness of the material.

Specular F

The specular F term represents the Fresnel function. The Fres-
nel function is used to simulate the way light interacts with a sur-
face at different viewing angles. We adopt Schlicks Approximation
[Schlick 1994] for the Fresnel term which is the most commonly
used in 3D graphics.

F (v, h) = F0 + (1− F0) ∗ (1− v · h)5 (3)

118

Where F0 is the specular reflectance at normal incidence.

Specular G

Specular G represents the geometry shadowing function used to de-
scribe the attenuation of the light due to microfacets shadowing
each other. This is once again a statistical approximation which
models the probability of energy loss. This may occur due to mi-
crofacets being occluded by each other or light bouncing between
multiple microfacets, before reaching the observer’s eye. The ge-
ometry attenuation is derived from the normal distribution func-
tion. Most implementations use Smith’s shadowing function [Wal-
ter et al. 2007] or Schlick’s model [Schlick 1994].

The complete geometry shadowing function is composed of the two
partial functions G1(n, l) and G1(n, v) as follows:

G(l, v, h) = G1(n, l)G1(n, v) (4)

The partial Smith shadowing function is defined as:

G1(n, v) =
2(n · v)

(n · v)
√
α2 + (1− α2)(n · v)2

(5)

and the partial Schlick shadowing function is defined by:

k =
(α+ 1)2

8
(6)

G1(n, v) =
(n · v)

(n · v)(1− k) + k
(7)

4.2 Diffuse BRDF

The Lambertian diffuse BRDF is still the first choice. Even though
other models (e.g. [Burley 2012]) are more accurate, the visual im-
provements are arguably insufficient for justifying the extra com-
putation in real-time applications.

The Lambertian diffuse is defined as:

f(l, v) =
cdiff

π
(8)

Where cdiff is the diffuse reflected color of the material. In order
to ensure energy conservation, the diffuse term should be balanced
using the inverse of the Fresnel term from the specular component
[Shirley et al. 1997]:

f(l, v) = (1− F (v · h)) cdiff

π
(9)

4.3 Imaged-based Lighting

Image-based lighting (IBL) is the most common technique to sim-
ulate indirect lighting in the current PBR engines. It uses envi-
ronment maps from real-world light probes or rendered scenes to
illuminate objects.

Importance Sampling

To use the presented shading model with imaged-based lighting,
the radiance integral needs to be solved, which can be achieved by
using importance sampling. Importance sampling substantially im-
proves the Monte Carlo algorithm by introducing a guided approach

to the sampling. The idea is that we can define a Probability Dis-
tribution Function (PDF) that describes where we want to sample
more and where we want to sample less.

The following equation describes the numerical integration:

∫
H

Li(l)f(l, v) cos θldl ≈
1

N

N∑
k=1

Li(lk)f(lk, v) cos θlk
p(lk, v)

(10)

which can be solved in real-time directly on the GPU [Colbert and
Kivnek 2008].

But even with importance sampling, many samples are still needed
to produce acceptable results. In simple scenes with only a few
objects and a single environment map this is not a problem. But
in more complex scenes with many different objects and multiple
environmental light sources the pure importance sampling approach
is not suitable anymore for real-time rendering.

This problem can be solved using a split sum approximation [Karis
2013]. This new technique is employed in the Unreal Engine 4 for
real-time PBR of complex scenes.

Split Sum Approximation

The split sum approximation splits the sum from (10) into a product
of two sums, both of which can be pre-calculated, see (11). This
approximation is exact for a constant Li(l) and fairly accurate for
common environments.

(
1

N

N∑
k=1

Li(lk)

)(
1

N

N∑
k=1

f(lk, v) cos θlk
p(lk, v)

)
(11)

The first sum is pre-calculated for different roughness values by
convolving the environment map with the GGX distribution using
importance sampling and storing the results in individual mipmap
levels of an environment map texture, as shown in figure 2.

Figure 2: Pre-calculated environment map, with varying roughness
levels stored in different mipmap levels.

The second sum in (11) includes the remainder and is equivalent to
integrating the specular BRDF with a solid-white environment. By
substituting in Schlicks Fresnel approximation (3) into the left hand
side of (10) F0 can be factored out of the integral. This leaves two

119

inputs (roughness and cos θv) and two outputs (a scale and bias to
F0), which can also be pre-calculated and stored in a 2D Look-Up
Texture (LUT), as shown in figure 3.

Figure 3: LUT of the second sum. Left Schlick and right Smith.

The main advantage of the pre-calculated LUT is that it is constant
for white light and it does not depend on a specific environment. So
it has to be pre-calculated only once for a particular shading model
and can be reused in every shader.

Therefore, with the split sum approximation, only two texture
fetches per fragment are needed to calculate the specular color. This
is a significant improvement over the importance sample method,
which requires multiple samples per pixel.

5 Material Model

In order to transport material specific data that can be fed into
the rendering pipeline, a material model is needed. We already
mentioned in Section 3 that PBR is a methodology and, although
principles and guidelines exist, there is no true standard. There-
fore, there is also no single standardized material model for PBR
at this time. Nevertheless, two models became commonplace [Al-
legorithmic 2015], namely the specular-glossiness and the metal-
roughness model. Both models represent the same data, but they
transport it in different ways.

5.1 Specular - Glossiness

The base of the specular-glossiness material model consists of the
following three parameters:

• Diffuse

• Specular

• Glossiness

In the specular-glossiness model the diffuse value represents, sim-
ilar to its traditional counterpart, the reflected diffuse color of the
material expected for pure black (0.0). In the specular-glossiness
model pure black (0.0) indicates raw metal, since metal doesn’t
have a diffuse component. In some implementations the diffuse
value is also called albedo.

The specular value defines the F0 value for dielectrics and the
reflectance values for metals. The F0 for dielectrics will be a
grayscale value and the metal reflectance can be colored as some
metals absorb light at different wavelengths.

The Glossiness value is a factor in [0, 1] and describes the surface
irregularities that cause light diffusion. Rougher surfaces will have
wider and dimmer looking highlights. Smoother surfaces will keep
specular reflections focused. A value of 0.0 (black) represents a

rough surface and a value of 1.0 (white) represents a smooth sur-
face.

Figure 4 shows the three single components of the metal-roughness
model and the rendered result.

Figure 4: Illustration of the Specular-Glossiness model.

5.2 Metal - Roughness

The base of the metal-roughness material model consists of the fol-
lowing three parameters:

• BaseColor

• Metallic

• Roughness

In the metal-roughness model the base color is used to transport two
different forms of data depending on the material type. For metallic
materials the base color transports the specific measured reflectance
value F0, for dielectrics it transports the reflected diffuse color of
the material. In this model it is not possible to specify a reflectance
value for non-metals. For those a constant reflectance value of 4%
(0.04) is usually used and covers most common dielectric materi-
als.

The Metallic value is a factor in [0, 1] and it acts similarly to a
mask which tells the shader how it should interpret data found in
the basecolor. While it is possible to specify values between 0 and
1, it is often used as a binary parameter with a value of either 0 or
1.

The Roughness value in the metal-roughness model is simply the
inverted glossiness value in the specular-glossiness and also de-
scribes the surface irregularities that cause light diffusion.

Figure 5 shows the three single components of the metal-roughness
model and the rendered result.

Figure 5: Illustration of the Metal-Roughness model.

5.3 Reflectance Values

Since PBR is based on physical laws one cannot use arbitrary inputs
for the reflectance values. Especially for the specular-glossiness
model where the parameters allow full control over the reflectance
of both metals and non-metals. The values must be correct and mea-
sured from real world data. Fortunately, several reference charts

120

exist such as the one from [Dontnod 2014] which provides sets of
values for specific materials.

5.4 Material Model Comparison

Both models presented have advantages and disadvantages.
Nonetheless, we consider the metal-roughness model more appro-
priate for a new PBR material standard. In our opinion, the only
significant advantage of the specular-glossiness model is the full
control of the F0 value for dielectric materials. But this is also a
drawback since it does not guarantee energy conservation for all
values. For example, a white (1.0) diffuse and a white (1.0) specu-
lar value can be combined reflecting/refracting more light than was
initially received if the underlying implementation (the shader in
particular) does not compensate for these situations. In contrast the
constant F0 value of the metal-roughness model is less error prone
and it is nonetheless possible to cover the most common dielectric
materials with a F0 value of 4%.

In addition, the parameter names of the specular-glossiness can be
more confusing as it uses a terminology similar to traditional mod-
els like Blinn-Phong but requires different data, whereas the param-
eter names of the metal-roughness model are easy to understand and
very clear in their meaning. Moreover, the metal-roughness model
is more memory friendly, as metallic and roughness are both single
floating point values.

Overall the difference in the two models is narrow and applies only
to certain edge cases. Therefore, in favor of simplicity we propose
to use the metal-roughness model as described in the next section.

6 Transmission Formats

To enable the widespread use of the model in different applications,
a well-defined and accessible transmission format is required. In
the web glTF and X3D have emerged as two of the most used 3D
transmission formats. Fortunately they are also easy to adapt, so we
propose extensions for these two formats in order to transmit the
required information for the shading and materials of the models.

As described in Section 5 we only need a very limited set of param-
eters for the material description and three textures to define the
environmental light information in the scene.

For every material description we need parameters for albedo,
metallic and roughness. All three values can be passed in as a sin-
gle field value that is then used for the full mesh. Alternatively, a
texture can be used to define a non uniform material on a mesh.
The environmental light textures are stored as light information in
the formats.

With this very small, well-defined and representation independent
set of parameters it is simple to also add it in any custom transmis-
sion format and to convert it from one format to another, enabling
a even wider use in different already existing applications.

6.1 glTF

glTF 1.0 doesn’t specify a shading model for materials but relies
instead on GLSL shader code and parameters (uniforms) in order
to describe a particular appearance. The drawback of this approach
is that the shader code is highly dependent on the renderer (e.g. for-
ward renderer vs. deferred renderer) and thus not compatible across
rendering engines.
The KHR_materials_common extension [Khronos b] provides
a straightforward alternative for defining materials based on the
popular Blinn, Phong and Lambert shading models as well as solid
colors (no shading). Each of these shading models only require a

compact set of parameters. An advantage of such a high level defi-
nition is that it is implementation independent.

We drafted a glTF extension, written against glTF version 1.0,
which expands the glTF material schema by adding a new identi-
fier for the technique property (”PBR”) and specifying our model’s
properties (color, metallic, and roughness) within the values prop-
erty used in our material description.

Since Image Based Lighting plays an important role in generating
plausible rendering results, we further outlined another extension
for defining prefiltered environment diffuse and specular textures.
The current glTF specification only defines 2D textures but there
are plans to support cube map textures in the future.

Directional, point or spot light sources should also be supported by
a renderer implementing this extension and can be defined using the
KHR_materials_common extension.

The following glTF excerpt contains the relevant elements for
defining a physically based material using our extension, including
the prefiltered environment maps.

{
"extensionsUsed": [
"YYZ_materials_pbr",

"YYZ_lights"
],
"materials": {
"pbr_plastic" : {

"extensions": {
"YYZ_materials_pbr": {
"technique": "PBR",
"values": {

"albedo": "plastic_albedo_tex",
"metallic": 0.0,
"roughness": 0.5

}
}

}
}

},
"extensions": {
"YYZ_image_based_lighting": {

"lights": {
"env_light": {
"type": "ibl_pbr",
"diffuse": "env_diffuse_tex",
"specular": "env_specular_tex",
"brdf": "env_brdf_text"

}
}

}
},
"scene": "default_scene",
"scenes": {
"default_scene": {

"ibl": [
"env_light"

]
}

}
}

The values for color, metallic, and roughness can be scalars (a 4
component vector in the case of color) or textures. If textures are
used, the mesh should provide the necessary texture coordinates.
It is assumed that all textures share the same texture coordinates,
defined as the primitives attribute TEXCOORD_0.

121

6.2 X3D

For X3D we propose two new nodes to represent the material and
shading properties for the PBR materials.

The first node is the PhysicalMaterial node that is used to specify
the parameters for a surface. It is used as alternative to the Material
node. The attributes are albedoFactor, roughnessFactor and metal-
licFactor that represent the albedo, roughness and metallic values
as desribed in Section 5. All three parameters can optionally be
replaced by a texture representation with the corresponding names
albedoMap, roughnessMap and metallicMap. The textures are pro-
vided by the ImageTexture node. If any parameter is specified with
a texture, texture coordindates for the vertices are required.

The second node we propose is the PhysicalEnvironmentLight
node. The PhysicalEnvironmentLight node is used to specify the
environmental textures for the shading and is placed inside a scene
node. The attributes are diffuse, specular and brdf LUT. The diffuse
and specular fields contain the baked lighting information in form
of a ImageCubeMapTexture and the brdf slot the lookup table for
the brdf function as described in Section 4.

X3D-based PhysicalMaterial with only factors

<PhysicalMaterial albedoFactor="0.22 0.3 0.5"
roughnessFactor="0.5",
metallicFactor="1.0" />

X3D-based PBRMaterial with textures

<PhysicalMaterial>
<ImageTexture
url="albedo.png"
containerField="albedoMap" />
<ImageTexture
url="roughness.png"
containerField="roughnessMap" />
<ImageTexture
url="metallic.png"
containerField="metallicMap" />

</PhysicalMaterial>

X3D-based PhysicalEnvironmentLight for IBL

<PhysicalEnvironmentLight>
<ImageCubeMapTexture

url="diffuse_env.dds"
containerField="diffuse" />

<ImageCubeMapTexture
url="specular_env.dds"
containerField="specular" />

<ImageTexture
url="brdf.png"
containerField="brdf" />

</PhysicalEnvironmentLight>

7 Implementation

After our analysis of the current state of the art on PBR and respec-
tive implementations, we were able to bring it to the Web. GPU-
based tools for pre-calculating the environment map textures and
look-up textures were developed. Our glTF and X3D loaders were

extended to support the new material definitions and our rendering
engine was updated with new shaders.

We used WebGL 2 as a base for our pipeline. Although it would
be possible to use WebGL 1.0 while keeping all the functionality,
features available in WebGL 2, such as multiple render targets and
floating point texture support, allow for a straightforward imple-
mentation.

The initial results were very promising. From our tests, the perfor-
mance of current WebGL implementations, running on a common
desktop computer, is appropriate for PBR rendering. The visual
improvements can be observed in Figure 6, where our PBR ren-
dering pipeline is compared with a traditional non-PBR pipeline
(x3dom). The 3D model used in the comparison is the popular and
publicly available PBR ready model by [Maximov 2014] which is
also shown in Figure 10 under different lighting conditions.

Using our implementation we tested several dielectric and metal-
lic materials (Figure 1 and Figure 7) with varying roughness levels
(Figure 8) and under different lighting conditions (Figure 9).

The current implementation is under active development and there
are still many aspects to be improved. Analytical direct lighting is
one of the open topics as well as translucent materials. We hope
that the approach discussed in this paper will help bringing more
physically-based rendering systems to the Web.

Figure 6: Comparison of a traditional non-PBR pipeline (top) with
our new state of the art PBR pipeline (bottom).

8 Conclusion & Future Work

In this paper, we presented a common material description for
physically-based rendering on the Web and proposed extensions for
the glTF and X3D Web transmission formats. The material descrip-
tion we settled upon is based on the parameter sets used in most
modern physically-based rendering engines. The introduction of a
unified material representation for the transmission formats ensures
consistent results across rendering systems. For glTF, our proposed
extension enables the transport of a wide array of materials with-
out the need for custom shaders. This notably reduces the size and

122

complexity of the transferred data for all supported materials, while
removing the constraints of the default glTF shader based material
definition, which is inherently renderer dependent. In the case of
X3D, we represent these materials with a set of new nodes.

Although the presented model allows to reproduce a wide variety
of real-world materials, we would like to expand it in the future.
Adding layering techniques would further increase the set of repre-
sentable materials. This would allow to model surfaces with multi-
ple layers that interact with the incoming and outgoing light.

Another important topic which is related to PBR is direct light-
ing. Conventional direct light sources like directional, point, or
spot lights are generally not suitable for PBR, since they can quickly
break the law of energy conversation. As such, analytical area lights
suitable for use in Web platforms would be another topic for further
research. Finally, we would like to investigate the conversion from
different sources of material representations.

References

ALLEGORITHMIC, 2015. The comprehensive pbr guide vol. 2.
https://www.allegorithmic.com/pbr-guide.

ALLEGORITHMIC, 2016. Substance designer. http://www.
allegorithmic.com/products/substance-designer.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3dom: A dom-based html5/x3d integration model. In Proceed-
ings of the 14th International Conference on 3D Web Technol-
ogy, ACM, New York, NY, USA, Web3D ’09, 127–135.

BLINN, J. F. 1977. Models of light reflection for computer syn-
thesized pictures. In Proceedings of the 4th Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’77, 192–198.

BURLEY, B. 2012. Physically-based shading at disney, part of
practical physically based shading in film and game production.
In ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12.

COLBERT, M., AND KIVNEK, J. 2008. Gpu-based importance
sampling. In GPU Gems 3, H. Nguyen, Ed. Addison-Wesley,
459–475.

COOK, R. L., AND TORRANCE, K. E. 1982. A reflectance model
for computer graphics. ACM Trans. Graph. 1, 1 (Jan.), 7–24.

DONTNOD, 2014. Dontnod. https://seblagarde.files.wordpress.
com/2014/04/dontnodgraphicchartforunrealengine4.png.

EPIC, 2016. Unreal engine 4. https://www.unrealengine.com/.

KARIS, B. 2013. Real shading in unreal engine 4. In ACM SIG-
GRAPH 2013 Courses, SIGGRAPH ’13.

KHRONOS. gltf. https://www.khronos.org/gltf.

KHRONOS. gltf common materials. https://github.com/
KhronosGroup/glTF/tree/master/extensions/Khronos/
KHR materials common.

KHRONOS. gltf extensions. https://github.com/KhronosGroup/
glTF/tree/master/extensions. https://github.com/KhronosGroup/
glTF/tree/master/extensions.

LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D. W.
2014. Src - a streamable format for generalized web-based 3d
data transmission. In Proceedings of the 19th International ACM
Conference on 3D Web Technologies, ACM, New York, NY,
USA, Web3D ’14, 35–43.

MARMOSET, 2016. Marmoset toolbag. http://www.marmoset.co/
toolbag.

MAXIMOV, A., 2014. Pbr ready game asset cerberus. http:
//artisaverb.info/Cerberus.html.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Commun. ACM 18, 6 (June), 311–317.

SCHLICK, C. 1994. An inexpensive brdf model for physically-
based rendering. Computer Graphics Forum 13, 233–246.

SCHWENK, K., JUNG, Y., VOSS, G., STURM, T., AND BEHR, J.
2012. Commonsurfaceshader revisited: Improvements and ex-
periences. In Proceedings of the 17th International Conference
on 3D Web Technology, ACM, New York, NY, USA, Web3D ’12,
93–96.

SHIRLEY, P., SMITS, B. E., HU, H. H., AND LAFORTUNE, E. P.
1997. A practitioners’ assessment of light reflection models. In
5th Pacific Conference on Computer Graphics and Applications
(PG ’97), IEEE Computer Society, 40.

SKETCHFAB, 2016. Sketchfab. https://sketchfab.com/.

THREEJS, 2016. Threejs. http://threejs.org/.

UNITY, 2016. Unity game engine. https://unity3d.com/.

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE,
K. E. 2007. Microfacet models for refraction through rough sur-
faces. In Proceedings of the 18th Eurographics Conference on
Rendering Techniques, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, EGSR’07, 195–206.

123

https://www.allegorithmic.com/pbr-guide
http://www.allegorithmic.com/products/substance-designer
http://www.allegorithmic.com/products/substance-designer
https://seblagarde.files.wordpress.com/2014/04/dontnodgraphicchartforunrealengine4.png
https://seblagarde.files.wordpress.com/2014/04/dontnodgraphicchartforunrealengine4.png
https://www.unrealengine.com/
https://www.khronos.org/gltf
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_materials_common
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_materials_common
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_materials_common
https://github.com/KhronosGroup/ glTF/tree/master/extensions
https://github.com/KhronosGroup/ glTF/tree/master/extensions
http://www.marmoset.co/toolbag
http://www.marmoset.co/toolbag
http://artisaverb.info/Cerberus.html
http://artisaverb.info/Cerberus.html
https://sketchfab.com/
http://threejs.org/
https://unity3d.com/

Figure 7: Different types of Materials. From left to right: white and red dielectrics, copper, and silver.

Figure 8: Varying material roughness. From left to right: 0.7, 0.6, 0.4, 0.2

Figure 9: Appearance of a same material under different light conditions.

124

Figure 10: The popular Cerberus PBR ready model by Andrew Maximov rendered under two different lighting conditions.

125

